Home

1. A Concept of Conscious Experience

 

DAVID SWIFT

 

 

 

You will recognize truth when you hear it. - Plato

 

1.

Four Illusions

From birth, we naively use our sense organs without any real grasp of how they dictate our world-view. First, we overestimate their capacity to produce complete and accurate reports; second, third and fourth, we obscure their natural product by learning depth perception, hand/eye coordination and language. These three skills make life easier, but rob us of direct insight into how our minds work.

Philosopher, Immanuel Kant (Critique of Pure Reason, 1781) argued that data from our sense organs is not a thorough nor a true report of reality. The problem is not the odd illusion; mirages rarely fool us. The bigger problem rests in the fact that no sense organ can directly experience, what Kant called, "nomenal" or absolute reality. It is the underlying source of, what he called our "phenomenal" (five senses) observations. Before Kant, we innocently expected to observe nomenal reality through our five senses, but he argued that our senses are limited. For example, our eyes interpret the various wavelengths of light as color and shape. Just as creditably, an oscilloscope shows us light as waves. Neither of these effects represent the nomenal reality of light. If our theories are correct, sight is the response of light sensitive cells to some frequencies of electromagnetism. Likewise, all our other sense organs follow the laws of physics by responding to energy. We can only sense the effects produced in our sense organs; we do not directly sense or comprehend the true nature of energies like light or sound, nor is the result anything but the way nomenal reality affects our sense organs. Before Kant's insight, we believed that our senses reported a true (nomenal) view of the world. After Kant, we realized that, that belief was naive. What else are we missing?

Two learned illusions also mislead us in a process that enhances our ability to deal with nomenal reality. Adults do not see and hear unedited sights and sounds the way that babies do. Early learning teaches us to use our sense organs most usefully, and that requires learning. All animals naturally benefit from learning to edit their raw two-dimensional perceptions to see in 3D, a skill that guides their muscles while touching things. As adults, we naturally use depth perception and hand/eye coordination without question because we would find life nearly impossible without them. We know that learning edits our raw perceptions because when impaired we forget how to see in 3D. If you have ever experienced drunken double vision, reason will tell you that each newborn also starts life with double vision, seeing two views - one from each eye. An adult's drunken sight is impaired; a baby's sight is raw and uncorrected. Within six weeks of birth, the brain's algorithmic learning rules (see chapter three) naturally coordinate the two pictures, merging two views into one that provides depth perception. Our brains learn to add data from memory that echoes and adapts our two eye's current sights by re-seeing (explained in the next paragraph) them tenths of a second later as a single, 3D view. Straitening up your fingers and holding them against your nose between two open eyes makes them nearly disappear. Yet, closing either eye proves that each eye sees your fingers fully, but ignores that data when both eyes are open. This effect is due to the learned skill of 3D vision. Our brains edit raw phenomenal experience by jumping over the thought steps between double vision and 3D vision. (As we will see, evolution has designed our brains to shorten our thought processes to the necessary essentials needed for decisions or other actions.) Even with effort, sober people cannot revert to double vision because our brains choose behavior by pleasure, and so, never trigger the less useful, double-vision option. Unless impaired, our two eyes only see the single view for the rest of our lives.

3D vision would just be another helpful childhood learned skill except that it misleads us about which part of us sees. Seeing one picture persuades us that our brains look out through two eye windows. We believe that the brain end of the connection sees the single view. As might be expected, we assume that closing one eye forces the brain to look out through the other eye. In these brief periods, we do not notice that one eye only sees 2D vision. We also overlook the experience of seeing memories in our eyes. If you want to remember your mother's face, you will find it easier if you close your eyes. Closing our eyes makes it easier to remember how something looks because open eyes tend to override memory with a flood of current sight. We can "see" both current and remembered data. While memories are brain data, we see it in our eyes; light does not affect brains; brains have no light sensitive cells that see. While most of us have understood that we must learn hand/eye coordination, we did not realize that eye/eye coordination needed learning first. 

Just as our brains learn to project a 3D view, our brains learning algorithm teaches it to coordinate our muscles with that depth perception. However, hand/eye coordination leads us to assume that we see things where they exist instead of in our eyes. Any sighted person with a coffee cup in front of them emphatically believes that they see it in the place it exists. It is right there, on their desk! They can confirm that it exists on the desk by reaching out and touching it. Learning hand/eye coordination usefully convinces us that we see things where they exist. However, while it exists where we touch it, we do not really see it there. Any first year physics student will tell you that we cannot project sight. Sight is one way. All light reflected from things enters into our eyes. Our eyes are cameras, not flashlights. Nothing comes out. We see the raw image in our eyes, and then, using our skill with 3D sight, compensate for the distance. Learning to correct raw sight so that we see things where they exist requires the combined skills of eye/eye and hand/eye coordination. Together, those skills allow us to touch, grasp and aim.

The assumption that our brains see things where they exist convinces us that objective observations are different from subjective observations. Subjective and objective observations appear vastly different, even opposites, but early childhood learning creates that illusion. We have mistakenly concluded that difference exists because we can only start to examine the workings of our sense organs after early learning has embellished their raw effects. We assume that inside observations reflect our private thoughts, emotions and other bodily conditions. We call them subjective observations because we observe ourselves. They seem unreliable because only one witness exists. On the other hand, we call what we assume are our outside observations, objective, because we are convinced that everyone else sees the same world we see. We trust these supposedly shared observations because we assume that others can confirm them. It gives us the appearance that inside and outside observations produce different degrees of credibility. Based on this, supposed difference, scientists dismiss the use of subjective observations as an unreliable and unscientific research method. This is science's honest attempt to weed out dubious "unconfirmed" knowledge; they have mistakenly assumed that subjective and objective observations have different degrees of credibility. However, knowing that eye/eye and hand/eye coordination depend on interpreting raw sight reveals that all raw sight is always subjective. Learning hand/eye coordination teaches us to fabricate the appearance of objective sight. We do not see things where they exist we see them inside our eyes and they are as subjective as all other observations. 

Some readers might object that calling a tomato a vegetable is one kind of mistake; calling the Empire State Building a duck is in a completely different category. They will say that we share more certainty in, "The sky is blue." than "I feel angry." However, while all English speakers call the color of the sky blue. We cannot see through another's eyes or hear through their ears. Others may experience what I call "blue" as what I would experience as red, green or yellow. Regardless of what color we experience, we have learned to label the color of the sky, "blue". As will be explained next, this misunderstanding is the result of the brain's automatic editing feature that presents us with a word label instead of the current phenomenal experience. While we share the word "blue", we can be no more certain that we experience the same color "blue" than we can be sure that we share the same emotion. No one is directly privy to another's conscious experience. 

So what? The three deceptions discussed so far, (the beliefs that we sense nomenal reality directly, our brains see things and that they see them where they exist) give us what philosopher, Edmund Husserl (Ideas: General Introduction to Pure Phenomenology, 1913), called the "natural attitude" of any animal. All animals naturally believe that we see the whole picture accurately. Most of us have never heard of Husserl. His was a German Jew, who came into the full prime of his career in the late 1930's, so the Nazis made sure his phenomenal approach did not get the timely publicity it deserved. They forbade him teaching or even speaking in public. After WWII, his so-called "existentialist" followers, Martin Heidegger and Jean-Paul Sartre, got the attention and fame. They used his method to delve into the philosophical mystery of consciousness. How can some groups of atoms be conscious while others are not? Their focus on consciousness missed the big-picture, psychological science that naturally follows from Husserl's method. The meaning of consciousness does not concern us.​ Our interest is scientific. We will use the science of phenomenalism to investigate how consciousness helps us survive and reproduce. In other words, how do our minds work? Like all animals, you the reader, took your natural experience at face value. You believed that your brain "naturally" saw the world, as it exists, where it exists. As if that were not enough to mislead us, the three illusions explained above gain even more creditability by our use of language.

Husserl missed the inherent deceptions in eye/eye and hand/eye coordination but did notice that our brains edit raw sensory perceptions by jumping over sight, taste and aroma to the word symbols "cup of coffee" that identify the communal perception. (This is another example of editing down to the necessary essentials. Later we will see how it tends to make our decisions mysterious and our thoughts ridged.) We taste, smell, feel, hear and see differently from each other because each of us has exclusive sense organs that sense from our specific perspectives. Nevertheless, we have all learned to label our own particular taste, aroma and sight with the same words "cup of coffee". That is the essence of learning language. Husserl held that while each person's five senses give us a private (subjective) view of reality, our brains jump past that basic, raw view to the generally accepted concepts labelled by language. Speakers of any one language use the same words to describe the things they see; using the same labels appears to confirm that others see exactly what we see. We assume that our brains see what other brains see in the places others see them. In fact, we only share the label. We can only experience raw sight from our own perspective. Even when alone, we jump past the phenomenal view and substitute the word label. Unless specifically mindful of raw sensations, we ignore the sight and aroma by jumping to "cup of coffee". (Freud also noticed the effect of this edit, and called the original, later forgotten, thought steps between stimulus and response, the "unconscious". He guessed that our brains repressed these in-between thought steps, rather than simply abandoned them because they were no longer useful for survival.) We cannot share our direct private experience with others, but we share the same language; communication convinces us that we share the experience. Husserl overcame the brain's efficient jump past direct, subjective observation by using reasons to follow and test his own raw and unlabeled experience. His method overcomes the illusion of objectivity, which he called, the "defect of science". No one else can see through our eyes, therefore, every one of our raw observations can only be private and subjective; no such thing as objective observation is possible.

Taken cumulatively these four mistakes have forced science to take on a false axiom. Each of these four illusions leads us step-by-step further from raw sight and its true picture of reality. Realizing that we all see subjectively in each of our own eyes, proves that science is mistaken in insisting that scientific observations must be objective. Objective observation is impossible! Both our inside and outside observations are equally subjective and equally creditable. 

 

Illusion's Effect on Science 

We can trace the objective/subjective distinction back to the mix-up that distorted the rules of science from the outset. Christian Church leaders saw a problem. A scientific understanding of our minds' operations would contradict freewill. A science of psychology would allow men to look into their own 'souls', and finding them predictable, could only undermine personal accountability for sinful behavior and, thereby, destroy the authority of religious leaders. Psychology was a threat to their theological worldview and their position, and they had vast powers to protect themselves. Centuries before, the Church had taken on the task of preserving knowledge and educating each next generation. They used the naturally mistaken distinction between subjective and objective to protect freewill and other religious ideas. As we will examine in more detail later, men like Galileo, Descartes and Newton used rationalism to find a "scientific method", but while the Church allowed scientists to use objective observation to look at the outside world, they forbade the use of self-observations. Churchmen used their teaching monopoly to allow the supposed objective physical sciences to proceed while misdirecting the subjective sciences by insisting that all science follow the objective process. As a result, we still try to use the supposed, objective method to observe our inside observations. As we will see, the hard sciences, believing the illusions already explained, have mistakenly called their subjective outside observations, objective observations, which worked well for physics. However, the belief in objectivism perplexes psychology because our minds cannot be 'seen' from the outside. We can only experience our minds subjectively. To advance our grasp of psychology we must abandon our belief in objective science. However, history shows us that all attempts by innovators to move to any next kind of investigative approach finds resistance from those making a living from the previous one. Now scientific journal editors and university professors have taken over the Church's teaching monopoly. They now own the knowledge and educate the students, and they too will brook no deviation. Like the Church, they will not publish or teach subjective observations.

 

Preliminary Subjective Psychology

As we will see, trusting subjective observations will correct our concept of brain operations. 

Modern physics shows us that only eyes see. Getting that right expands our concept of mental organs. Brains cannot do everything. In fact, brains cannot see, understand meaning or make decisions. There is a simpler, better explanation for how we use consciousness to help us survive and reproduce. We will show that our brains are no more than hard drives. Input/output, they learn and remember. Brains are not in charge, reflexes govern the conduct of all living things like plants, and even animals without brains like earthworms. 

Some plants have light sensitive cells. Reflexes prompt them to turn their leaves towards the sun or other source of light. Their sensitivity to light has a survival value, in that the more sunlight absorbed, the more sugars produced. Are plants conscious of light? While, for the reasons explained above, we cannot easily know what a plant feels, they are unlikely conscious. Consciousness is our trigger to learn and remember new behavior; plants cannot learn. The plant need not learn to turn its leaves; DNA controls that move. Reflexes also govern the behavior of animals that lack brains. Worms use them to eat, reproduce, and pull back into their holes at the feel of vibration. Again, worms have no need of consciousness. Consciousness has a survival function for animals with brains because our senses are general not specific. Our eyes do not search for a specific sight; they see all light within their range. General senses would be useless without the ability to gauge and learn the effect that the different things we sense might have on us and the behavior to take advantage or avoid their effects on us. Our eyes could see lions and cliffs, our ears could hear thunder and our bodies feel the earth shake, but without consciousness of danger to us, we would remain unmotivated to learn useful behavior. No gain could come from general sight or hearing, and mobility would enable a stumble into danger as much as help us survive. We could not learn from our mistakes. We learn new behavior in response to situations unexpected by evolution. Evolution has not had time to reshape our reflexes to drive a car. Conscious feelings produced from reflexive, homeostat, feedback loops like, hunger, thirst, and sexual desire drive us to learn adaptive actions in response to a rapidly changing and complex world. Sense organs reveal the world around us, self-interested emotions make our decisions, and muscles act. Brains store and produce the learned data. Our minds could not cope without self-conscious reflex feedback loops that make us conscious of pleasure and pain. Animals with brains remember pleasure and pain as emotions. Memories of those pains and pleasures are the biological motives for our learned thoughts and other behavior. 

Finding the role of each part leads us to see the obvious - while we remember our emotions from our brains; we first learned them as conscious feelings produced by reflex homeostats. Coming chapters will explain how sensations from our five senses trigger brains to remember learned emotions and muscle actions to promote survival and reproduction. It is a biological theory of psychology.

The rest of this first chapter alternates between challenging the reader to look at their own experience and explaining how first, the Church and then the objective sciences strove and strive to preserve the established order.

 

2.

Minds have four kinds of organs. Your brain follows along as you read these words, but it does not understand them. It responds to a match, and finding one triggers that matching memory back to your eyes to confirm the match. You first linked each word to a concept (learned it) because both coexisted with a homeostatic feeling produced by the approval of a teacher. Approval feels as sweet as the taste of mother's milk because memory links those two. When you recall the memory of the word linked to the concept, the emotional feeling comes with it, but not to the eye. Words and concepts go back to the eye or other original sense organ; the feeling goes back to the gut system that issued it. The brain matches, the eye identifies by comparing photo to negative while linking the concept and the homeostat (hunger, thirst, sweetness) evaluates its meaning to you. You remember feedback feelings as emotions that tell you what matched concepts mean to you. Matching identifies self-interest. Right now, I hope you feel skeptical but curious. Behavior works the same way. Nerves connect your muscles to your brain. If a bus had hit you before, you will remember (same rules as above) that injury pain at matching the sight of a bus. The same match also connects to muscles. Muscle sensations remembered as actions will help you avoid danger. Learning has linked the matching concept, homeostatic value and useful muscle actions. Those are the four organs of our minds: brain, sense organs, homeostats and muscles. Your brain can learn and remember connections between data from any of the other three parts at the speed of nerve impulses.

The emotions you feel come from your brain, because it stores all feelings. However, saying that your brain weighs content is like saying a DVD player sees a movie. Your brain does not see, feel emotion or muscle tension, but it will learn all three together when cued by a homeostat. Your homeostats feel self-interest; your brain, sense organs and muscles are their tools. What we have been calling emotions are really the learned products of homeostats. Sorbonne physiologist, Claude Bernard, first realized in the 1860s that evolutionary mutations that Harvard physiologist, Walter Cannon called homeostats in 1932, help to keep both simple single cells and complex animals like human beings alive by running their chemistry. These feedback loops keep us within viable limits. On the cell level, they control nutrition and division, making the difference between live and dead. They keep what should be stable, like heartbeat and blood pressure, from going to extremes. Each one uses a law of physics to produce biology. For example, the one that adjusts your breath rate uses the acid levels in blood to prompt a breath as needed. Each breath reduces the acid by increasing the blood's oxygen level, and when our bodies use that oxygen, the increased acid level will cue another breath. The more oxygen you use, the more acidic your blood and the faster you breathe. Sit or run: this feedback loop matches your breathing rate to need. Other loops match other needs to demand. Plants have no choice, they must follow their program; animals need the self-interest of homeostats to make self-serving choices.

Taking a breath underwater would drown us. For that reason, we learn to control breathing, but postponement causes discomfort and then pain. Conscious pain is the effect of the homeostatic feedback in the same way that sound is the effect of feedback from your fire alarm or heat is the effect from tripping your thermostat. We can breathe all day and night long with no awareness, but controlling the process long enough causes discomfort and will make you conscious of the need to breathe. The pain produced by the blood's acid level cues consciousness. Postponed hunger, thirst, cold, heat, and sexual desire also cause conscious pain. Like the need for oxygen, hunger and other demands prompt pain and desire. That feedback is the basis of motive, and the learned actions to quench it are our behavior. Our brains are all-purpose homeostats that create unlimited numbers of life saving loops by cuing learned acts, like ducking bullets or going to work. The brain's design forces it to note and store all sources of pain, and find and store any useful behavior. Our brains are evolution's answer to ever changing threats in unlimited numbers.

You have spent all-your-life-so-far filling your brain with a self-focused take on events, along with the useful actions that promote pleasure and keep pain at bay. Like those dinosaurs, that we suppose had a second brain to control their tails, our single brain houses distinct control systems. Each only responds to one homeostat. Hunger prompts much of our learning of both facts and actions, but sexual desire also excites its fair share of study. All homeostats start a learning algorithm upon feeling pain or pleasure. In future, those learned feelings apply history to the current state of affairs. This is a variation of the homunculus theory, (https://en.wikipedia.org/wiki/Homunculus_argument) but instead of "a little person or smaller brain that lives inside your regular brain," it holds that homeostats start or stop the energy to act. This avoids the infinite regress problem of other homunculus theories. We need no further back-up decision makers. Homeostats use our brains like data stores, meaning caches, and action notes to promote pleasure and keep pain away. They, not our brains, trigger emotional degrees to value, desire, and prompt action. We pursue the pleasure that rewards survival behavior. Each homeostat watches like a fire alarm, and one of them, at this moment, is producing emotions that judge these words. We have thought of our minds as one thinking entity, but homeostats take turns, sometimes two or three weigh-in at the same time, even arguing with each other. (The strongest emotion will always win.) You should be able to observe each one as they use pleasure and pain to express their own desires, demands, and solutions. Taken together, they are the core of you, me, and every other mind. Some peoples group's agree and act as a smooth team. Yes, we call these people winners, but are they? Some people’s groups conflict in goal and method - often stuck in self-doubt, but sometimes coming up with new and better answers. Conflicting equals compel choices that mislead us into a belief in unlimited freewill. Again, the strongest emotion will always win forcing each life history to duly play out, unless self-awareness changes our values. Only understanding your mind and re-evaluation can rob fate of its victim.

This idea is not new. Scientists were floating self-preservation as the cause for behavior more than a hundred years ago. They just could not square the like of self-harm, self-sacrifice and celibacy with staying alive and having children. This theory explains such choices as scorn for evolutionary goals in favor of finding short cuts away from pain and towards pleasure. As drug addicts, heroes, and priests prove, the donkey can avoid pulling the cart, if it can already taste the carrot.

 

3.

Before we go any further, some readers may need a better idea of exactly what we mean by 'emotions'. Eventually, we must explain them, and it might as well be now because they are crucial to this theory.

Emotions start out as homeostatic feelings like hunger and thirst. We experience such feelings at the various locations in our bodies that generate them. For example, we feel hunger as an ache in the stomach. We feel the pain of extremes of cold and heat on our skin. We feel injury pains at the location of the scrape, cut, or blow. We feel the pleasure of relief from thirst in our mouths and the pleasure of relief from a warm sweater or cool breeze on our skins. Our survival depends on such feedback feelings. As has been said above, "[t]he brain's design forces it to note and store all sources of pain, and find and store any useful behavior." The brain stores feelings. The pain of injury is a feeling. The pleasure that rewards useful actions is a separate kind of feeling. Later, sourcing pleasure and pain feelings from memory makes them emotions like anxiety, pride, and hope. We remember pain as fear, the promise of respite from pain as hope, and great pleasure as joy.

Let me use an example, Biff the bully punches you in the nose. That triggered the injury homeostatic reflex and produced pain. The next time you see Biff, you remember that pain by re-feeling it in your nose. You may raise your hand to protect your nose. Maybe even give it a rub.

Understand, this time Biff is still across the room. You have not been physically hurt yet, but you remember the pain of your last encounter. That remembered pain comes from a memory stored in your brain. Remembering a feedback feeling makes it an emotion. Your original hurt is now an emotion called fear.

Seeing you, Biff comes over, and says he is sorry and gives you a hundred dollars. You use the money to take your current romantic interest to dinner, who is so happy that she or he agrees to spend the night at your place.

The next time you see Biff you will remember both pain and gratitude. Those conflicted emotions will produce nervousness. You would feel pain, nervousness, and sexual arousal, and that is just the result of two meetings with Biff.

Your emotional take on Biff will develop with each meeting, depending on the result of the last one. The collective result will ordain whether you run and hide or jump up and shake his hand. Over time, emotions develop so much nuance that we can hardly follow the process. The ever-growing layers of emotion about everything affecting you, developed between childhood and adulthood, keep you from realizing that emotions trigger our responses. It feels like thinking because it comes from your brain and determines your actions, but it is just remembering.

We know that our experience comes from our brains because a current punch in the nose feels different from a remembered punched nose. To précis Scottish philosopher, David Hume (An Enquiry Concerning Human Understanding, 1748), "memory feels like a shadow of current events." Memory is a faded version of primary experience. We experience all feelings, either current or remembered, at their original locations. A punched nose (remembered or current) always hurts in the nose. That is how we know the nose was hurt, not the elbow. Nevertheless, while we feel memories at the site of original experience, we are also aware of the brain as their source, which distinguishes current from remembered feelings and dreaming from waking experiences. We source current waking feelings in our five-senses, but feel remembered and dreaming sensations from our brains.

We have failed to notice re-feeling memories at their original location because we feel the source of memories as the brain. That feeling overpowers and feels relatively more noteworthy than our experience of the effect of memories on the body location. It feels like the brain feels memories because the source of memory outshouts the effect of remembering. This outshouting has evolved because our ability to set apart current from remembered threats and opportunities has an obvious survival value, so much so, that it defines sanity. We experience all sensations: current, waking, dreaming, and remembered in the affected organs, only vividness gives us the source. Source tells current from remembered, sorting an immediately actionable threat or opportunity from a dream or memory. (Anyone unable to feel the difference between current and remembered or waking and dreaming sensations should see a doctor before continuing.) Paying close attention will confirm that we experience the source of memories as our brain, but the organ of origin experiences the content. We remember all sensations in the same way, so while remembering mom's face puts an image of her face in your eyes, remembering how to move a muscle moves that muscle according to the memory. This consistency explains how we so effortlessly coordinate muscles to play the violin or execute a basketball jump shot. Memory replays sights in eyes, sounds in ears and muscle movements in patterns recorded in rehearsal or practice.

So the argument runs this far, that we use memory to identify and act on current situations and that we consciously experience that from our brains. The brain matches the sight in eyes triggering our emotions and actions from memory. A tenth of a second glance at Biff prompts the brain to produce several tenths of recognizing (that is Biff), evaluating (he hurt me), and action (where can I hide) memories. Eyes were the source of only the tiny current bit of the whole experience; the brain produced the bulk from memory, which gives us the awareness that we feel most of our ongoing feelings from it. We source our decisions from the brain, but we did not make them there. We correctly feel the remembering of most currently felt experience in our brains. We remember, rather than think out, most of our current responses. The emotions felt this time make our decisions about what to do next time. We store them in the brain for that coming occasion. We react to the world by noticing the sensations echoed from memory. Any match to a sight or sound from now will reproduce the past experience with its evaluating emotion and any helpful learned actions. You run and hide or jump up and shake Biff's hand according to the learned emotional evaluation triggered by recognition. Brains store our decisions; emotions are those decisions; and we experience those decisions as feelings in homeostats. This explains the effectiveness of training, the problems inherent in misidentification, and the reason generals always fight the current war with the tactics that would have won the last war. Again, it feels like thinking, but it is just remembering (playback) from the brain, prerecorded experience played back in sense organs, homeostats, and muscles.

These memories need not be from the distant past; the rules remain the same; we constantly check the now with the just before. Remembering echoes of what has just been learned and using those memories to project a likely future gives us the pool of moments surrounding the current point of time as described by Martin Heidegger in, Being and Time (1927). Music would not make sense without the constant comparison of note-to-note and phrase to phrase. We could not "figure out" the process for meeting our goals without remembering the link between current action and future results. We use the past result to improve the next action.

The brain's ability to record and re-record current sensations in a way affected by both past and current experience makes it doubly effective, while giving the illusion of thought. Brains feel in charge because they are the source of most of our current feelings. We know that because we could not recognize Biff without a memory of a past meeting stored in our brains. We also could not feel Biff's threatening or supportive meaning to us or respond without memories of his former painful/nervous/sexual effect on us. We argue hereafter, that reflex homeostatic feelings and emotions derived from them evaluate the sensations from our five-senses and trigger all our muscle responses. The only worthwhile fact is the cause of pleasure or pain and the only reason for knowing it is to intervene. That is a predictive and testable scientific theory; it is also, all of animal psychology in a sentence.

The mind concept sketched above presents such a simple, straightforward account of our behavior that it is hard to imagine that no one else has thought of it before. Yet, it is so foreign that you read it, you cannot find anything wrong with it, but it does not change your mind. At this point just about all readers still believe that, if not their spirits, their brains are reading these words though their eyes. It is hard to give up on an idea believed by everyone since the beginning of time. Our dogged grip on that "natural attitude" has a biological/psychological proof that is hard to deny. In fact, the Church fathers probably based their religious ideas of souls and spirits on our everyday experience of the 3D illusion. Our very survival depends on the belief that we look through our eyes and see the world in three dimensions, but it is still an illusion. We have been tricking ourselves for a long time, and the cause must be exposed and corrected before we can proceed to psychology.

 

4.

Life depends on the hand-to-eye coordination made possible by 3D sight. Animals quickly learn that hunting is easier, if we pretend to see in 3D. Killing a moving target depends on it. Normally, readers believe they see these words where they are, some fourteen to thirty inches (35 to 76 cm.) in front of their eyes. If we really could see things where they exist, we would not need two eyes; one could gauge the distance.

As a matter of course, our all-purpose homeostats (brains) learn all useful behavior. If you find boring math hard to learn, you may only reluctantly accept that the learning of painful or pleasurable things (things that matter to you) are a biological necessity. Every reader can remember what she or he last ate because our brains retain that fact without any effort to learn it. We cannot help ourselves; our brains learn without trying; biology dictates that we learn every fact and action that has proved a benefit.

While still in our cribs, biology teaches us that it helps to decode our 2D sight as if we could see things where they exist. We coordinate sight with hand, arm and lip actions to touch a toy or suck a teat. Anyone, seeing a baby in a crib stare at its hands and fingers or find a nipple, will understand the learning process. Babies learn to coordinate their movements with their sight. The world exists away from us, so cues such as the size and clarity of objects help to judge the gap to distant things. Anyone who has studied art knows the tricks that put an object in the background. At close range having two eyes helps establish the exact remove. All babies who survive learn this illusion within six weeks of birth. By the time they grow into young children their self-deception makes the adjustments so quickly, they are not even aware of doing them. The 3D illusion lets us easily hunt and kill, touch and grasp things. If we, like a drunk with double vision, always saw two scenes, one in each eye, touch would depend on integrating them. Hawks and foxes would starve. Driving a car, even at five miles an hour, would be a nightmare, which is why we never want drunks to drive.

Interpreting our sight in 3D naturally leads us to mistake where we see things. We must trust that we see them where they exist in order to snatch them. That, and the closeness of the eyes to the brain, convinces us that the eyes just connect the seen object to the brain. The verbs look, peek, gaze, leer, ogle, stare and listen suggest voluntary action. Most of us imagine peeping out through our eyes, when in fact; sight is passive. We say and believe that a hand in front of our eyes blocks our sight, when logic tells us that sight is like hearing. A wall blocks noise, just as a hand blocks the light reflected from objects into our eyes. The light reflected from objects enters and affects our eyes; our vision does not travel to the object. Our eyes are cameras, not flashlights. If it were the other way around, we would see in the dark.

We misjudge the sites of hearing and smell for the same reason. We have learned to interpret the loudness of a sound in each ear to find direction and guess our distance from it. Likewise, we can smell scents from elsewhere and automatically look into the breeze for the source.

For these reasons, the 3D illusion is thoroughly convincing. As our most used sensory organs (eyes and ears) pierce our skulls, it seems common sense to view them as the brain's view on the world. As a result, we believe that our brains see, hear, taste, smell, and touch, the world through our senses, in spite of the need for brain cells to have magical or super-computing powers to do that. From the beginning of records, this paradox has lead people to create myths about how our minds work.

 

5.

The earliest recorded guess about our minds comes from Egypt. James Breasted tells us in The Development of Religion and Thought in Ancient Egypt (1912) that, based on his readings of their tombs, they too believed in a central mind. They guessed that the heart made decisions, a mind-is-heart theory, and did not even bother to mummify the brain because it was useless. They also had concept of soul, called the Ka. Their Ka differed from our modern soul idea. While born with the person, it quickly went to wait in the afterlife. Funeral rites made their body recognizable to its Ka. Someone, somewhere, had either (depending on your beliefs) dreamed up or found the afterlife: a nonphysical world, and so, split reality into two dimensions. Egyptian priests could offer real estate in their nonphysical world to believers in this world. Obeying here calmed your fear of death by earning your place in the next world. Accepting blame implies a belief in freewill.

The Egyptians' soul and mind concepts spread beyond their borders. About three-thousand, five-hundred years ago, around 1450 before current era (BCE), Pharaoh, Thutmose III, conquered and, for two or three hundred years, Egyptians ruled parts of the Mediterranean shore, north over to, what is now, Turkey. That introduced their mind, Ka, freewill, and afterlife concepts to those new subjects. The idea of pleasant afterlife proved popular, and would not quit even after the Egyptians retreated. Trade may also have spread it along the shore.

What is now Israel (Palestine on the map provided below) lay next door, along the same coast. The Jews developed their own soul concept. It inhabited the body until death, and went on to the afterlife leaving the body behind.

 
  

Eastern Mediterranean

 

The Jesuit philosopher and historian, Friar Frederick Copleston, History of Philosophy (1962), tells us that a thousand years later, further along the same coast, Greeks pondered minds and souls. Around 600 BCE, Anaxagoras, teacher of Socrates, noticed our power to think and called it nous. Socrates’s student, Plato, combined soul with nous. He noticed that when asked to think up a thing like a horse or boat, not a specific one but an example of the whole class, we depict them as perfect. Envisioning gives us one without the rough edges that set the real thing apart from the idea. Mental circles are perfect; no perfect circles exist in the real world. While today we might credit that to the ease of idea over the grit of really making it, he concluded that nous or thought must come from the soul. Therefore, thoughts must come from a mental world. Plato had combined the Egyptian mind and soul - a thinking soul. Others continued to use these mind, soul and nonphysical world concepts to explain psychology.

Anaxagoras

Socrates

Plato

Aristotle

Epicurus 

Hippocrates of Cos

 

Friar Copleston's exhaustive research tells us that we have inherited two concepts of mind from Greek times: (1) Plato's mind concept existing in an ideal mental world, and (2) the scientific physical mind ideas of Aristotle and Epicurus. Based on this division, two schools have evolved - idealism and materialism. Two beliefs, two paths, both alive and well in modern times.

On the materialistic path, we find Hippocrates of Cos, the father of western medicine and author of the Hippocratic Oath. He came up with the idea that physical brains were the seat of thought and action - the mind as brain. This, of course, is the modern medical model taught to each generation of healers, but it miscasts the brain as mind, sense organs as spies and muscles as minions. The top down account sounds very normal because it fits with our view of how the leaders of family, work, and government make decisions. It assumes that the brain holds the power and, like a parent, boss or prime minister, makes the decisions.

When you think about that arrangement, you will realize that it made perfect sense according to the facts at hand. Brain injury does affect behavior, which seems to confirm it as the source. The world bombards our eyes and ears with sensations that we remember. The fact that we base our decisions on such data implies the brain's capacity for decisions. We also feel the sequence for voluntarily actions coming from our brains. Hippocrates' explanation seems to fit perfectly! However, he used some shady logic in his reasoning; he deduced too much from the fact that brain injuries impair the mind: strict logic dictates that the premise only proves that brains are a part, not the whole mind. Not the whole pipe, any small blockage will stop the flow.

His model presents another problem: it places a perplexing burden on the brain. His idea that the brain takes charge colored his guess about the role of sense organs and muscles. The difficulty results from how we must process data. The sense organs must take it in, each in its own form: sight from eyes, sound from ears etc. The brain must translate those kinds of inputs to something it can work with, and then translate it again to muscle action. It seems a bit much to expect from brain cells. Whichever language we have learned as children just happens to be the language of thought? Our brains just happen to be able to translate sights, sounds, smells etc. into that language. The brain, a flesh and blood organ, would have to deal with every kind of sensory input and minutely control every muscle, on top of adapting known facts to each new situation. No ten-story computer could do as much and crediting such powers to flesh and blood makes trying to explain how it works futile. Burdened by demands for objectivity, neuroscience has made progress and asks for time, holding out the promise that the brain’s magic will eventually be dissected, neuron by neuron, but not until we invent better computers and not in the foreseeable future.

On the idealistic path, some seven or eight-hundred years later, we find the Roman, Christian philosopher, Plotinus, Enneads (200 – 270 CE). He joined Plato's mental mind to the Jewish soul. The result put Plato's mind into the soul, and then, like the Jews, placed the soul into the body. Mind, soul, and body were a kind of turducken (a chicken stuffed into a duck and then stuffed into a turkey). In his concept, the mind was a part of the soul, as a thumb is part of a hand. Christian bishop, St. Augustine of Hippo, (354 - 430 CE) (On Marriage and Concupiscence) described the soul and body as a marriage like that between a man and a woman. Death could now naturally divorce the thinking soul from the body. The mind in the soul could jump the line between life and death easily because neither was physical in the first place. That meant the soul had a memory of this life after death. Thinking souls promised believers an endless life but with the threat of everlasting misery. This new Christian dogma (truth from authority) gave Church leaders land and political power.

On the other hand, the Romans were materialistic Epicureans. They built their empire on hard-nosed math and engineering. Idealism was lion food, and not useful nor wise until the Christian conversion of Roman Emperor, Constantine the Great (313 CE current era). His switch to Christian beliefs was enough to insure that the idealistic view of mind ruled western thought until the Renaissance. However, by then budding science had become a threat to the Popes and their Holy Roman Empire.

 

6.

The Greeks had been the first to write the knowledge of pre-history, Babylon, and Egypt, along with their own. Their books fueled European rediscovery two-thousand years later. Excepting for Roman soldiers and builders, the years between had been a dark age for materialists. We can imagine the humbling of medieval monks and priests reading ancient texts plundered from Arab libraries by crusaders. The Romans had exited Europe long ago (410 CE) leaving it to survive an economic and cultural crash. Rude shacks could not compare to Greek and Roman ruins like the Parthenon and the tombs that pilgrims viewed along the Appian Way. Those far finer buildings mocked them with high taste and lost skills. The Bible and surviving Greek and Roman works on math and science inspired wonder. Before moveable type, naive readers would tend to overrate such precious, hand-copied books. Hundreds of years later, Shakespeare and Goethe still portrayed such books as the source of the magical powers wielded by their sorcerers, Prospero and Doctor Faust.

Churchmen were both awed and aghast by what they read. Some of these books held useful secrets; they loved Plato. His belief that all our ideas came from a perfect place sounded very much like heaven to them. He confirmed that view in his dialogue Phaedo. There he tells us that Socrates expected to continue existing on a pleasant isle after his death. Other books by other authors went against basic Christian beliefs. Church fathers buried or banned the works of materialists for denying the freewill and afterlife concepts. They damned the unsafe works to the Index Librorum Prohibitorum (1559 CE) "to prevent the contamination of the faith or corruption of morals". We would be fools to overlook the fact that a physical view of mind was never in the Church's best interest. Minds forced to follow the laws of physics cannot have freewill and that seems to rule out choice. Without freewill we cannot be responsible for our actions, cannot sin, and should not be accountable to God, the Church or anyone. That robs the Church of the hook that made it rich and powerful. Those prone to believe in plots (like Nietzsche, The Antichrist - 1895) might suspect a plan to control the laity, but it could have been a mistake based on faith. No one tests religious beliefs with the peer review process that drives modern sciences.

Church leaders saw science as a real threat to their authority. Early researchers could not fight back. The Church had used its power to burn their own friar, Giordano Bruno at the stake. They had put Galileo Galilei in jail until he promised to conform. Then they threaten Rene Descartes with the same fate. Wanting to pursue his scientific work and avoid jail, Jesuit instructed Rene Descartes (1596 - 1650) came up with the Cartesian compromise. He proposed splitting the subject matters of materialism and idealism, "the res extensa or matter and the res cogitans or spirit." (History and Philosophy of Science and Technology Volume 1, Eolss Pub. Co. Ltd. Oxford, UK. 2010, Pg. 161) Doing so created a line along the skin of every human being. What was inside the line was 'spirit' and the realm of theology; what was outside it was 'matter' and the world of science. Fear enticed the Church to accept his plan. They were safe for as long as no one could question that the mind was spiritual. (Medicine, being a hard science that probes under the skin, has over the years, shrunk the spiritual realm until now only the brain houses our magical minds.) The new science conformed to Church dogma. Authority, beyond that of any King of the time, enabled them to enforce this limit on science. Fear of prison or death obliged acceptance by the scientists. The way the 3D illusion works seems to confirm a central mind. For that reason, the Church plan offered no obvious hardship to science. They had lost the right and power to examine our minds with no prior precepts, but the rest of reality was wide open. Our hero Descartes had saved the Greeks' kind of rational science for Physics, Chemistry, and Biology. However, leaving our minds in a now mental dimension puts psychologists in the impossible position of studying something that has no place in reality. In 1991 an autodidactic scholar like, Charles Van Doren (Yes, he of the Sixty-four Thousand Dollar Question fame.) was still able to write, “But we cannot sense minds, other persons’ or our own. Minds are immaterial things.” (A History of Knowledge - 1992)

Mental is the word that science has used to replace the religious word spiritual. Both words describe how our minds work. Using "mental" allows us to keep the spiritual mind idea in science by hiding its religious source. Church used words like soul, spiritual, afterlife, and freewill to describe their mind concepts. These words have vague meanings most suitable to religious beliefs. Spiritual ideas correctly rely on faith not evidence. Today the concepts have not changed, but we use scientific sounding proxies for those religious words. Mental means the same as spiritual. Motive includes freewill, and even psychological is the opposite of physical. The concepts represented by modern words like mind, mental, motive, and psychological are no better defined than their old religious counterparts are. They have no valid physical objects. There is nothing to see, hear, or grasp. We cannot use science to test such vague concepts because no one claims they refer to anything in our physical reality. No one trusts modern psychologists. They cannot reliably cure the problems of criminals or addicts, and defense psychologists stump our law courts by strongly denying any testimony by equally qualified prosecution experts. They cannot talk about psychology in concrete terms.

Plato had invented a mind in an ideal, perfect place that supplies this world with its ideas. Plotinus's take on Plato's idea led to a dead-end because you cannot explain how a spirit affects the physical world. Descartes found a way to save the spirit idea by putting it beyond rational probes. His plan suggested that the soul looked out onto the physical world from the spiritual world. He guessed that the pineal gland, housed in the center of the brain, provided the contact point between the two worlds, and no one wondered how the souls of blind people could be blind. The Church founded and owned our first universities at places like Bologna, Oxford, and Paris, and, in laying the groundwork of modern scholarship, would exert power over science far beyond their lifetimes. They carefully organized their universities to stave off any conflict with their beliefs by using the Cartesian compromise to detach Science from the Humanities, the hard from the soft and the social from the physical sciences. Classifying psychology as one of the Humanities lumped it in with Philosophy and Poetry, which cut it off from the more serious Physics and Math studies. Those two streams come to different results; the Humanities provide personal opinions, while the Sciences produce facts. With this division, science could do little to harm the Church, but it was bad news for psychology. Materialism still held and holds the overwhelming endorsement of the hard sciences; it underpins all officially sanctioned medical treatments. No alternative arrangements have gained any serious traction in the two-thousand five-hundred years since Hippocrates.

 

7.

Descartes' work should have been enough to smother psychology, but by 1900, the Church had lost much of its power. Seeing an opening, the first social scientists tried to use hard science methods to study human behavior. However, the compromise had affected the sciences in way that led hard scientists to misunderstand their own method. No one could be sure whether it was the heart, spirit, mind, or brain, but all still believed that something peeped out of their skulls through their eyes. That mistake has had little effect on physics. We can put boots on the moon without fully understanding how we did it. On the other hand, trying to apply their mind view to psychology upset any attempts to study it. It seems silly to assume you already know what you have set out to find out, but with no proof that objectivity was possible, they insisted that science needed it. It is not possible and we do not need it. We will soon show, that we can only observe our own motivation by the subjective method of, Edward B. Titchener, Experimental Psychology, (1902). He called it introspection. I can almost feel any working scientist who has not read this recoil in horror. "Sure," I hear them saying, "we are conscious of our feelings, but they're subjective. No two people feel exactly the same way in response to things and events." Titchener was not peeping out through his eyes; he looked the other way; he paid attention to his sensations. Descartes' model had logically lead most of the other scientists to believe that, "subjective experience is inconsistent and therefore cannot be part of an objective scientific explanation." That is what they said in Titchener's time. His introspective method was "unreliable, limiting, and subjective." The entire scientific community balked. Following Descartes' split, they completely believe that all of our brains look out through our eyes and see the same objective material world, as though we were all watching the same TV program from different houses. While no one claims to fathom how brains grasp the world, we still use the empty-of-meaning word mind to refer to our thinking ability, believe it exists in the brain and looks out onto the world.

 

8.

Although they were not aware of the effect, science still holds that our thoughts and knowledge have escaped the laws of physics. It assumes that we see the material world from the mental world.

Meanwhile, on the Humanities side of the college campus, no less a thinker than Immanuel Kant (Critique of Pure Reason - 1781) said there must be a distinction between nomena and phenomena. The world exists in a pure nomenal form that we cannot know; we can only know the phenomenal form reported by and filtered by our five senses. Here is the difference. Looking through a magnifying glass at the back of your hand looks different from looking without the glass. The magnified view shows a smaller area, but in more detail. Which view is correct? Both sights are phenomenal because they depend on tools. One is eyes plus glass the other is eyes alone. Neither view is correct nor incorrect; each tool shapes its view. No tool can produce the absolute nomenal view. We can only have a subjective view.  We are limited to the data in our sense organs - different viewers, different tools, different appearance. You and your dog get a different sense of the world. For one, the dog is colorblind. For another, dogs place more trust in smell. Our ears can only detect some sounds; dogs can hear higher pitched sounds. The design of our sense organs limits our view of the world. We theorize that radio waves and magnetic lines exist, but we cannot detect them through any of our five senses, and cannot know what else our sense organs are adding or missing. Philosophers after Kant believe that only the perceptions in each conscious stream exist for each of us, and that those feelings can only be internal and private. This truth dates from 1781, but neither the physical nor the social sciences use it. Following the Egyptians, Plato, Plotinus and Descartes, science is still mislead by the 3D illusion, and assumes that we can see things where they exist; that all useful data is external and public. The Church's division of university subjects into science and the humanities left little or no chance for contact or exchange of ideas, and for that reason, scientists like Titchener were and are not aware of progress made by or after Kant.

*Kant's insight inspired Edmund Husserl. He said that if Kant was correct, we can only study the world of things in our own conscious streams because it is all the evidence open to anyone. Reflex sensations, like sight and hearing, are our conscious streams. Edmund Husserl's example is about the reality of coffee. He says our view is less about the learned concept of hot water in a cup and more about what we experience - the raw color, aroma, and taste. We see the color and shape of a cup filled with something dark. Picking it up moves, what clearly now acts as a liquid, and we remember that we are holding a cup of coffee. We remember the coffee and cup by matching the raw sight, taste and smell of color, shape, movement, flavor and aroma to memories. It is the same learned process guides our hand-to-eye coordination. We have not noticed the substitution of the learned label 'cup of coffee' for the raw 'phenomenal sights and aroma' because the way our brains work edits that leap. Our brains just connect the two. In our brains, we identify the subjective sight, taste and aroma as an objective 'cup of coffee'. The quick version misleads us by projecting our sense of things directly to our identifying memories. The projection confirms the 3D illusion by triggering the same learned label in all of us. It cuts the in-between thinking steps from between the subjective experience of a cup-shaped profile of color and coffee smell clues to a supposedly objective 'cup of coffee' conclusion. We do not talk to each of our personal experience, but jump to the common label, which misleads us into believing that we share the same experience. Husserl recommends an epoché or halt to stop us from jumping past our first raw sensations to what they represent. He has not grasped how much he asks of us. Such an epoché would reduce us to helpless babies. The almost instant leap between sight and smell and 'cup of coffee' is same leap our hands make guided by our eyes. We would not live long without the thought skills learned as babies. Accumulated knowledge makes the biggest difference between competent adult and helpless baby.

 

9.

Looking over these opening remarks, we might now expect to study the mind like any other biological system, but we cannot, while still believing our minds look out onto the world through our eyes. We need another way to observe. However, what are we to look with? What are we to look at?

For all history, humans have assumed that the operations of their minds were hidden operations. This assumption leads us to believe that our mental state could objectively observe the world. Using that mistake, a high-school lab class asked to find the boiling point of water would report that they had all seen bubbles in the beaker at a reading of around one-hundred degrees Celsius. Because we have believed that we were seeing things where they exist, we naturally assume others see exactly what we see. They really saw the bubbles in their own eyes, not the beaker, but that would not stop them from answering correctly. Their minds have learned to jump past their perceptions and onto the remembered symbol. It does not matter where they see the bubbles; all evidence suggests that sea-level water boils at one-hundred degrees. Getting the sight concept right is not necessary for physics in the same way that grasping space travel is not necessary for driving to Toronto. However, if the class knew how and where they really saw water boil, they could observe their own thoughts.

We could ask the students to report all their conscious sensations. We would expect answers along the line of answers to the physics question. They would mention seeing boiling water and reading thermometers. With a little prompting, they may remember hearing the normal classroom sounds of others conducting their work. Pointed questions may get them to admit slight pains from boiling water bubbles splashing their hand as they reached for the thermometer. Leading questions might get them to admit a feeling of pleasure when comparing their result to the result they remembered as correct. These answers recognize a variety of, some previously ignored, sensations that exist in our conscious streams. So far that includes two kinds of the five senses sensations - sight and hearing; two kinds of evaluating sensations; pain from a current reflex and a remembered emotion of pride; and a memory of the sight or sound of the words one-hundred degrees Celsius. We need only add the sensations of muscle actions that also impose on our consciousness to name all the kinds of sensation. They would realize that no feeling can be objective, and therefore, all science can only be subjective. None of us is privy to another’s experience and 'shared observation' is an oxymoron.

We have always based our knowledge on nothing more dependable than private observations. Nevertheless, that was enough to put feet on the moon. It does not matter where you see things, it only matters that you observe correctly. Our success at using material wrongly convinces us that we see things where they exist. Science only works because the overwhelming majority of scientists make good faith efforts to give true reports, and others catch any mistakes. Realizing that our feelings are subjective and, therefore, could be misunderstood does not call the method of science into question. It, rather, expands observation to include shared accounts of any kind of sensation as evidence. We still need to confirm; we just have to know our agreement is subjective. Observations can only be subjective, and any repeated by others deserve note because they might well be true and valuable.

The only way forward adopts a completely physical worldview, but our eyes can only look outward. The reader should by now believe that thoughts and emotions are subject to the laws of physics, but how do we observe them? Titchener and Husserl led the way. Realizing that sight is a feeling, they reduced all sensory perceptions to their basic form. That basic form is the energy feelings we can use to observe both our minds and the world. Our minds burn feelings as fuel and yield them as products; the rest are just cells. To understand how our minds work we need to acknowledge that sight is a feeling in our eyes. Kant and Husserl were correct; all observations can only be subjective feelings. I may report seeing water boil at one hundred degrees and others might confirm my observation, but while we report the same thing, we cannot share the feeling.

 

10.

The mind theory presented hereafter is not at all like Plato's idea. It comes to us mostly second-hand by way of a single copy of a Roman poem (The Nature of Things by Lucretius) found (1416) in a backwater German monastery. Harvard's, Stephen Greenblatt (The Swerve, 2011) tells us that the poem's discovery and sharing by Papal translator, Poggio Bracciolini sparked the seventeenth century science of Galileo and Newton. The poem's subject is the philosophy of Greek materialist, Epicurus. He mainly studied under the atomist, Democritus, but the idea of the Stoic, Zeno that we must give-in to the laws of nature, also greatly influenced him. We learn from the poem, that thought needs more than a brain. Epicurus understood the 3D illusion and so, unlike the Plato, believed that the soul could not look out through the eye like a window (“if that were the case it would see better without the eye”). He taught that the eye sees for itself. That is important because he is not only saying that the mind is physical; he is also saying it is bigger than our brains and we experience the world in our various sense organs - like eyes. If Epicurus is correct in saying that eyes see for themselves, then ears must hear for themselves and so on.

The Epicurean model poses the brain as a library for the five externally focused sense organs, muscles, and homeostats to use as writers and readers, rather than the spies and minions of the Hippocratic model. We have the five senses to identify things and homeostats for self-interest. Emotions and muscles, not the brain, drive our bodies according to the instructions they write and later read. While the brain houses, links, and matches that data, as we will see, it has no awareness of their content or effects. The brain, like a library building, has no means to access or understand its knowledge. The three different kinds of sensitive organs create and borrow the feelings brought in and lent out. Only the organs are conscious of each's sensations. Brain injury would be like a fire at one end of the building that burns some books and that would change behavior because data or access was missing, not because of damage to some supposed decision-making faculty. No, 'I' exists to look out through our eyes; the sense organs themselves are our 'I'. The good news, from the scientific point-of-view, is that his concept excuses the brain from the need to understand, and so we can ditch the super-computer brain. We can now simplify brain operations to a level that our current theories of biology can support.

If the readers would be kind enough to entertain the idea that we experience light energy in our eyes and record that feeling in our brains, then they would also have to grant that sight energy remembered from the brain goes back to the same eyes. We feel memories of light energy in our eyes. As we will see, Ivan Pavlov, Lectures on Conditioned Reflexes, 1928, discovered that all our sense organs have double-wired (afferent and efferent) nerve connections to the brain. If the brain were the organ conscious of sight and memories of sight, we would only need a single, one-way nerve connection. We would only need to wire the senses one-way to the brain and one-way from the brain to the muscles. We can only need two nerves, if the traffic is two-way; evolution hates waste. That confirms that the eye and other sense organs get information back from the brain. The sense organs re-feel memories. If we see in our eyes and hear in our ears then our conscious stream is a series of feelings occurring at sites all over our bodies. You still have to operate your day-to-day life as if the stereoscopic illusion were a real picture of the world, but this is science, no one can see atoms either. This 'whole body' mind concept lends itself to a far simpler explanation of psychology. Nevertheless, we still face the same problem. How do we sense it?

 

11.

As has already been said, we experience the effects of our minds, bodies, and the world as feelings in our conscious stream. Therefore, we could just pay attention to our feeling streams and share what we feel with others looking for patterns. That would work in time, but there is a problem. As adults we translate raw feelings with subroutines, like hand/eye coordination and cups of coffee. Husserl noticed that we react without thinking and without noticing the process. He said that we can only see the front profile of a cup of coffee, but we act as if we could see from all sides when picking it up. Our sight is limited so we must fill in the rest from memory. He wanted to feel life as a baby before learning all the memories that interpret our experience, and we can. If you have ever drunk enough alcohol almost to poison yourself (this is not recommended, even under medical supervision), you have found that your hand/eye coordination was lost. You could not even put a key in a door lock. You were not be able to walk strait or even stand. However as you lay on the ground, drooling and puking, soiled by your own feces and urine, you might have noticed that you had impaired your access to a lifetime of learning, and, having induced Husserl's epoché, were at that moment as helpless as a newborn.

I have purposely induced just such a state, with notebook and pencil, to follow my basic though process. The results follow.

 

This is the end of the first chapter.

 

 

 

 

 

 


 

 
 

MindExamined.com